Magnetfelder


Bezug zum Kerncurriculum:
Ich kann magnetische Felder durch ihre Wirkung auf Kompassnadeln beschreiben und die Richtung von magnetischen Feldern mit Kompassnadeln ermitteln.
Ich kann Magnetfeldlinienbilder für einen geraden Leiter und eine Spule skizzieren. Ich kann die magnetische Flussdichte B (Feldstärke B) im Inneren einer mit Luft gefüllten, schlanken Spule berechnen.


Magnete

Ein Magnet hat einen Nordpol (rot) und einen Südpol (grün). In der Nähe eines Magneten kann man auf eine Kompassnadel eine Wirkung beobachten. Der Magnet erzeugt ein Magnetfeld mit folgender Wirkung:

Gleichnamige Pole stoßen sich gegenseitig ab und ungleichnamige Pole ziehen sich gegenseitig an.

Ein Permanentmagnet, der eine dauerhafte magnetische Wirkung zeigt, enthält immer Eisen, Kobalt oder Nickel. Andere Elemente zeigen keine ferromagnetische Wirkung. In der Praxis baut man Permanentmagnete zumeist aus einer Mischung aus verschiedenen Materialien. Starke Permanentmagnete werden z.B. aus einer Mischung von Neodym, Eisen und Bor hergestellt.

Man findet nur magnetische Dipole. Teilt man einen Magneten in zwei Teile, entstehen immer zwei neue Magnete mit je einem Nord- und einem Südpol. Folgerung: Ein Permanentmagnet besteht aus Elementarmagneten, die in Unordnung sein können (keine äußere magnetische Wirkung) oder die geordnet sein können (äußere magnetische Wirkung).

Den Raum um einen Magneten, in dem auf andere Magnete eine magnetische Wechselwirkung beobachtet werden kann, nennt man ein magnetisches Feld. In der folgenden Simulation wird ein Magnetfeld um einen Stabmagneten simuliert. Die Wirkung des Magnetfelds wird mit Hilfe kleiner magnetische Kompassnadeln visualisiert. Klicken Sie dazu auf den Tab "Durchführung" und führen Sie das interaktive Experiment im Tab "Interaktives Experiment" wie beschrieben durch.

Die Simulation basiert auf dem Modell zweier magnetischer Monopole (einer im Norpol, einer im Südpol), deren Kraftwirkung abhängig vom Abstand mit \(\frac{1}{r^2}\) abnimmt. Das von diesem Modell berechnete Magnetfeld unterscheidet sich vom real gemessenen Magnetfeld um einen ähnlichen Stabmagneten, die Näherung ist aber hinreichend, um eine Vorstellung der Kraftwirkung im magnetischen Feld zu entwickeln.

Experiment: Magnetfeld eines Stabmagneten

In einem neuen Fenster starten: Magnetfeld eines Stabmagneten


Videoempfehlung: MAGNETS: How Do They Work?.


Magnetische Wirkung stromdurchflossener Leiter

Hans Christian Oerstedt hat 1819 als erster beobachtet, dass in der Nähe eines stromdurchflossenen Leiters eine Wirkung auf eine Magnetnadel zu beobachten ist: Oerstedt-Experiment.

In der folgenden Simulation können Sie die Wirkung stromdurchflossener Leiter auf Magnetnadeln studieren. In der Simulation wird nicht die technische Stromrichtung vom Plus- zum Minuspol verwendet, sondern die Elektronenstromrichtung vom Minus- zum Pluspol. In der zweidimensionalen Darstellung wird ein Leiter als Kreis gezeichnet.

  • Wenn das Symbol "Punkt" im Kreis zu sehen ist, dann soll der Elektronenstrom aus der Ebene herausfließen,
  • Wenn das Symbol "Kreuz" im Kreis zu sehen ist, dann soll der Elektronenstrom in die Ebene hineinfließen.

Dafür gibt es eine Merkregel: der Punkt steht für die Pfeilspitze, die auf einen zufliegt; das Kreuz steht für die Federn am Ende eines Pfeils der von einem wegfliegt.

Experiment: Magnetfeld um einen stromdurchflossenen Leiter

In einem neuen Fenster starten: Magnetfeld um stromdurchflossenen Leiter

Linke-Hand-Regel 1: Umfasst man einen stromdurchflossenen Leiter mit der linken Hand so, dass der abgespreizte Daumen in Richtung der fließenden Elektronen zeigt, dann zeigen die gekrümmten Finger in die Richtung, in welche sich die Nordpole der Kompassnadeln ausrichten.

Wickelt man einen langen mit einer Isolierung überzogenen Draht zu einer langen Spule, dann überlagern sich die Feldlinien der einzelnen Windungen zu einem Magnetfeld, das dem eines Stabmagneten ähnelt. Bei der einen Öffnung der Spule entsteht ein Nordpol, auf der anderen Seite dann ein Südpol. Es entsteht ein Elektromagnet.

Die Wirkung eines Elektromagneten kann enorm gesteigert werden, indem in die Spule ein ferromagnetischer Stoff (Eisen, Kobalt, Nickel oder Mischung) eingebracht wird. Die Elementarmagnete des ferromagnetischen Stoffs richten sich im Feld des Elektromagneten in Richtung des äußeren Felds aus und verstärken dadurch dessen magnetische Wirkung.

Linke-Hand-Regel 2: Der Daumen der linken Hand wird abgespreizt und die gekrümmten Finger zeigen in die Richtung, in welche die Elektronen durch die Spulenwicklung fließen (Fingerspitzen in Richtung der gezeichneten Kreuze). Dann zeigt der Daumen in die Richtung, in welche sich die roten Nordpole der Kompassnadel ausrichten.


Magnetfeld in einer langen Spule

Ein stromdurchflossener Leiter ist von einem Magnetfeld umgeben, dessen Feldlinien in konzentrischen Kreisen um den Leiter orientiert sind. Wickelt man isolierten Draht zu einer langen Spule, entsteht aufgrund der Überlagerung der magnetischen Felder einer jeden einzelnen Leiterwindung ein resultierendes Magnetfeld, das dem eines Stabmagneten ähnlich ist. Für die Magnetfeldstärke in der langen Spule gilt:

\[ B = \mu_0 \cdot \frac{N \cdot I}{l}\]

Dabei ist \(B\) = magnetische Feldstärke, \(\mu_0 = 1,257 \cdot 10^{-6} \, \frac{\text{Vs}}{\text{Am}}\) = magnetische Feldkonstante, \(N\) = Windungszahl der Spule, \(I\) = elektrische Stromstärke in der Spule, \(l\) = Länge der Spule

Füllt man die lange Spule mit einem Material, dann hat das Material eine Auswirkung auf die magnetische Feldstärke in der Spule. Untersucht man die Auswirkung eines Materials auf die magnetische Feldstärke, dann kann jedem Material eine Materialkonstante \(\mu_r\) (die Permeabilitätszahl) zugeordnet werden. In der Formelsammlung finden Sie Permeabilitäten für verschiedene Materialien. Eisen hat eine Permeabilität zwischen 300 und 15000, so dass ein Eisenkern die Magnetfeldstärke einer Spule dramatisch erhöhen kann.

Für die magnetische Feldstärke in einer materialgefüllten Spule gilt:

\[ B = \mu_r \cdot B_0\]

wobei \(B_0\) die magnetische Feldstärke der baugleichen luftgefüllten Spule ist. Es gilt also allgemein für die magnetische Feldstärke in einer Spule:

\[ B = \mu_0 \cdot \mu_r \cdot \frac{N \cdot I}{l}\]


Videoempfehlungen: